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A technique is described for the solution of the Helmholtz equation together with as- 
sociated boundary conditions based on a generalization of a method used for the solution 
of the Dirichlet problem of potential theory, in which a dipole dictribution is introduced 
on the boundary of a region to generate the potential inside. In order that the boundary 
conditions be satistied, the distribution must be found as the solution of an integral equation. 
If the boundary is smooth, the equation is of Fredholm type, but if it has a corner the 
equation is singular. The problem of a sharp corner is analyzed, and properties of the 
solution are developed using the theory of singular integral equations. Direct use of the 
tclchnique can be made impossible in some cases by the presence of “partner problem” eigen- 
values. A simple method for avoiding this difFiculty is presented. 

I. I~~TRODUCTIOX 

The use of integral equations to find solutions of Laplace’s equation or the Helm- 
holtz equation satisfying various boundary conditions has a long history, dating 
back at least to the work of Fredholm on a “new” method of solution for the Dirichlet 
problem [I]. Although the properties of these integral equations have been of great 
theoretical interest throughout this century, the advent of the large, high-speed 
computers has made the method of great practical utility. Tn particular, for the solu- 
tion of the Helmholtz equation, 

(V + G)+(r) :.- 0, (1) 

the use of a boundary integral equation for obtaining $ numerically has two decided 
advantages over the alternative finite difference (FDM) or finite clement (FE&l) 
methods in which an approximation for the Laplacian operator is introduced. In the 
first place, only points on the boundary of a region arc needed to obtain the solution 
so that the dimensivnality of the space of unknowns is reduced by one. This can be of 
substantial benefit in reducing computer storage requirements for a desired calcuIa- 
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tional accuracy. Secondly, for “exterior” problems, in which the region involved is not 
closed, an “outgoing wave condition” is automatical& aclzieoed by the proper choice of 
kerrzeljimction in the integral equation. This condition is difficult to impose accurately 
in the FDM or FEM approaches. 

Three different (but related) boundary integral equation methods have been 
developed for solution of the Helmholtz equation: 1. the solution is expressed in 
terms of an auxiliary monopole (“charge”) distribution on the boundary of the region; 
2. the solution is expressed in terms of an auxiliary dipole distribution on the 
boundary; or, 3. the solution is expressed in terms of the solution and its normal 
derivative on the boundary by making use of the Helmholtz representation which 
arises from Green’s theorem [2]. In each of these methods an integral equation for 
the unknown is obtained by considering the limit of the integral representation for 
4(r) in which r approaches the boundary. These three methods have been presented 
together using a consistent notation in a fine paper by Kleinman and Roach [3], so 
that their similarities and their differences can easily be seen. It is found that the 
integral equations typically involve one of two kernels, either that for the free-space 
solution for an isolated monopole, or the normal derivative of that solution at a 
surface. If the former kernel occurs (and the boundary is smooth), one must solve a 
Fredholm equation of the first kind, while for the latter the equation is of the second 
kind. Since the solution of equations of the first kind presents some difficulties not 
found for those of the second kind [4], it has been traditional to choose methods lead- 
ing to the latter. Recently, however, Jaswon [5] and Symm [6] have shown that the 
former equations can be treated satisfactorily, so either approach can be useful. In 
this paper we will use the dipole representation for the Dirichlet problem, but since 
the kernels needed for the various approaches are closely related, some of the conclu- 
sions which will be reached can be readiIy adapted for any of the other choices. 

As has been noted above, the integral equation which is obtained for the dipole 
distribution has a kernel of the Fredholm type (completely continuous) if the boundary 
is smooth, but it is singular if sharp corners are present. In the last few years a number 
of applications of the method to acoustic and electromagnetic radiation problems 
has been made [7-121, but in these no detailed analysis of the complications arising 
from sharp corners was done. In Section II of this paper we give a reasonably com- 
plete analysis of the properties of the dipole distribution in the vicinity of a corner. 
The behavior of the solution of the Helmholtz equation near a corner has already 
been determined by Meixner [13] and others [14-171 using techniques based on the 
differential equation, but we here provide an alternative development based on a 
direct treatment of the singular boundary integral equation which we believe has an 
inherent interest of its own. 

A significant difficulty exhibited by the boundary integral equations is that the 
homogeneous part of a particular equation may be identical to that for another 
problem. Thus, from Table I of Kleinman and Roach [3] one sees, for example, 
that the exterior Neumann problem expressed using a dipole distribution, and 
the interior Dirichlet problem using a Hehnholtz representation have the same 
homogeneous parts. Thus, if one wishes to solve the exterior Neumann problem at 
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an eigenvalue of the interior Dirichlet problem a direct approach will be impossible, 
This difficulty is well-known [2, 18, 191. If the Hefmholtz representation is used, one 
finds that the inhomogeneous term in the integral equation is orthogonal to the 
eigensolution of the transposed homogeneous equation so Ihat, by the well-known 
Fredholm theorems [20] a solution exists but it is not unique. It has been shown that, 
for the Helmholtz representation, if the second of the two integral equations is added 
to the system, one will then have a unique result 13, 19, 21, 221. In Section HI of this 
paper, we provide a simple alternative method of calculation for use when a dipole 
distribution is employed. This involves modifying the kernel so that its resolveat 
is not singular at the eigenvalue. 

The ideas of this paper have been implemented in the development of a computer 
program for the solution of the Helmholtz equation in two dimensions for regions 
bounded by polygons. In a subsequent paper the numerical techniques used and some 
representative results are described. 

II. THE DIPOLE DISTRIBUTION NEAR A CORNER 

A solution of the Helmholtz equation, Eq. (I), in a region V can be expressed in 
terms of a dipole distribution, D(r), on the boundary of the region, SV . Speciiicaliy, 
one can write: 

#(r) = Is, D(r’)[V’G(r, r’)] . do’, 

where G(K, r’) is a solution of the equation 

(v,” + K”)G(K, r’) = 6(r - I-‘), 

and the integral is taken over the surface, SV , of the region [2]. If the region P’is finite, 
only the singularity in G at r --j r’ is important, but if the region is unbounded then a 
further condition for r -+ cc must be imposed. Pn such cases, one is usually interested 
in the solution of wave-scattering problems, and one writes 

Here, $~~.,&r) is a specified incident wave, and #&r) is the scattered wave. The latter is 
required to have only “outgoing” parts. In this paper we shall be interested in two- 
dimensional phenomena; in this case [23] 

G(r, r’) = -iHo(l)(K / r - f &q (2) 

where ~7:’ is the EIankel function of the first kind. In two dimensions the volume, V, 
becomes an area in a plane, and the integral is taken over the bounding contour with 
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do = -& x dt, where 6, is a unit vector out of the plane and d8 is a line element 
along the contour. Using Hf” = --Hi”, we can write 

If one has a bounded region, then the total solution, #(r), will typically be repre- 
sented as in Eq. (3), but the (complex) Hankel function factor iHi” can be replaced by 
the (real) Neumann function (-&). In the Dirichlet problem, zj is specified on the 
boundary, and one obtains the boundary integral equation by taking the limit as r 
approaches the boundary from within the region V. One finds: 

Hp)(fc 1 r’ - r 1) 
If-r] 

(r’ - r) . da’, 

where f(r) is the specified boundary value of #(r). We propose to investigate the 
properties of this integral equation. 

Although the boundary distribution technique can be applied directly to cases in 
which the boundary is smooth, i.e., satisfies a Eiapunov condition [24], some addi- 
tional analysis must be given if the boundary has sharp corners. In the former case, 
the kernel of the equation can be shown to be completely continuous and so the usual 
Fredholm theorems apply. On the other hand, if there are corners the kernel is 
singular. 

To deal with this situation, we will consider a corner in a boundary and for simpli- 
city we will assume that the two sides of the corner are straight, The angle between 
these two sides will be called E. Further, since the singular nature of the equation 
comes about because of the small-distance behavior of the kernel, we divide the 
kernel into a leading term which includes the most singular part, and a remainder 
which is completely continuous. Thus we write: 

H;‘(x) = - & + R(x), 

and we will focus attention principally on the first term. 
If Eq. (5) is now introduced into Eq. (4), we find: 

D(r’)(r’ - r) . dc’ 

j- $ $ B(r’) “(;,!‘li ,r ‘) (r’ - r) . da’. 

Let us now introduce the notation that D,(s) is D(r) on side 1 of the comer where s is 
the distance from the corner, and Q(s) is D(r) on side 2. With this notation, the 
equation can be explicitly written for r on side 1 as: 
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where -&(.s> is the boundary value of f(r) on side 1. For a straight side there is no 
contribution from the distribution D,(S) to the potential on that side except for the 
term D,(s)/2, because the vector r’ - r is perpendicular to the surface element. The 
length of side 2 is Lz . The integral over B’ is the contribution from the distribution 
other than the part on sides 1 and 2. This last integral is analytic as a fumtion of s: 
since it is a finite integral and ( r’ - r 1 > 0 for r’ on B’ and r on side i. 

Similariy, for side 2 we have: 

where the ..x indicates terms similar to the R, B’ terms forji . 
To analyze the corner singularity, we introduce D,(s) = D,(s) i De(s). We then 

obtain 

D+(f) ds’ 

where Fi,, is the lesser of tI and & , and F+(S) includes the contributions offz(s) and the 
remainder of the equation coming from R, B’, and the integral for the larger 8i 
beyond tI, _ Obviously, these integral equations have a singular kernel as s, 3’ + @ 
and so some care must be used in dealing with them, either for analytic or numerical 
purposes. 

We now make a Mellin transformation of the equations to obtain 

In this equation, O(o = Jr D(s) SC-l ds. In obtaining Eq. (7), we have made the 
direct Mellin integration and have used the inverse relation: 

D(s) = (23~i)-~ jcT: d(f) s-< ds, 

The 6hoice of the constant c will be discussed later. The transform of the function 
F;(S) is CD&). In arriving at this equation we have interchanged the order of integra- 
tion over &? with those over s’, s, which can be justified a posteriori. Next we can 
evaluate the integrals over s’ and s. It would be convenient at this point if one could 
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interchange these integrations, but in fact the results can easily be shown to depend 
on the order chosen. The integral over s’ can be evaluated by noting that (P - 2s’~ - 
cos 01 + sz) = [s’ - s&][s - s.+], and then separating the factors using partial 
fractions; the resulting integral can be expressed in terms of hypergeometric functions 
[25]: 

s t! % (s’)-5’ ds’ p-c’ 
o (d2 - 2s’~ cos cd + 9) = - 241 - F’) sB sin DI 

Tf s > I,n , the hypergeometric functions are analytic and have convergent power 
series expansions, but ifs < 8, we need the analytic continuation of the functions as 
can be obtained using Kummer’s relations [26]: 

i 
(s’)-6’ ds’ 

,” (s’” - 2s’s cos a + 9) 

= $-& p, 
sin[(7r - a) (‘1 

sin rrf’ 

These results can be used to evaluate the final integral over s, using Eq. (9) for the 
portion of the integral in which 0 < s < I!?,, , and Eq. (8) for the remainder. For our 
purposes, the most important term which arises thereby is that which comes from the 
first term on the right-hand side of Eq. (9): 

The feature of this term of particular interest is the pole at E’ --f [. Then other terms 
can be integrated using the series representations for the hypergeometric functions, 
with the result that: 

As a function of .$‘, it is easily found that the integral has poles at the positive integers, 
while as a function off there are poles at all the integers with the exception of .$ = 0. 
Since the integrals will only be convergent if Re{& < 1, - 1 < Re{fj < 1, and 
Re{E - f> > 0, we must initially restrict the range of these variables to satisfy the 
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inequalities. If we iet the point t approach the integration contour subject to the last 
of the conditions, we then obtain an integral equation for A(t), of the form: 

where we have absorbed the series of terms from Eq. (i 1) into @. 
This equation is in standard singular integral equation form, and thus may be treated 

using known techniques [27]. We begin by considering the homogeneous equation, 
and introduce a function 

where Act) is a solution of the homogeneous equation. Clearly H(s) is an analytic 
flunction in the finite half-planes defined by Re(f) 2 c, and it has a discontinuity in 
crossing the contour of integration. If we define the iY*j(Q to be the functions obtained 
from the integral in which Re@ >( c, respectively, together with their analytic 
continuations, we then easily find that 

and so 

*[HL+‘(f) - f&‘(f) f P(f) &+‘(()]/r(tj> = 0. (13) 

This equation can be used to deduce the analytic structure of do’. 
We eventually wish to obtain the analytic structure of D(s), which will require using 

the inverse transform on d(f). For the latter step, in the iimit s + 0: the contour in 
the inverse transform can be closed on the left, and so the behavior of D(S) is determined 
by singularities on the left of the contour. Hn this region IT-)({) is clearly analytic, 
and so we can solve for H(+)(E) in terms of H(-‘(& using Eq. (13) to analyticahy 
continue H(T)(.~) to the left of the contour. Thus we find: 

f&‘(f) = (I + i(f))-’ f&!(f). 

b solution of this equation can be obtained by taking the logarithm of the eqaation .I 
and then noting that In H(E) is a function with a given discontinuity on the contour. 
The soiution of this problem (the “Hilbert problem”) then can be written [28] 

assuming that the integral converges. We then see that H:‘(f) is analytic and nonzero 
on the left of the contour, and if we use Eq. (13) to analytically continue Wf_L’(Q, it is 
evident that Hi’ will also be analytic unless 

1 J-, r(E) = 0. 
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At such points, Hy’(&) will generally have poles. Thus dF’(& also has poles at 
such points. 

The solution of Eq. (12) may now be obtained by introducing 

Then it is easily seen that 

r(tJ) O*(f) = T&‘(f) - s&‘(f) 
so that 

(1 3 r(Q) Z&)(0 - Z!-‘(E) = -2r(?3 CD*(S). 
Using 

(1 Z!X r(E)) = &‘(nl&‘(5), 

(14) 

this equation can be written: 

Again we have a discontinuity equation to satisfy and we obtain as the formal solution: 

Since %‘g)([) is analytic on the left of the contour, if we use Eq. (14) to obtain the 
analytic continuation of &Y~‘(~), we finally find that 

(15) 

Thus, we can generally expect poles in 3(e) in the left half plane wherever 1 rt ~(0 = 0 
on the left of the contour. 

To complete the discussion, it is necessary to specify the contour; i.e., to determine c. 
In the first place, from the restriction on Re([), we require that - 1 < c < 1. In 
addition, the preceding development will only give a meaningful expression for 
H(t) if ln[l i Y(&] -+ 0 as / Im 5 / -+ co. It is easily seen that y(f) .w exp[(] QT -a / - Z-) * 
I Im t II as I Im E I + 9 so 40 + 0. Thus the logarithm will approach zero at co, 
unless it has an imaginary part of the form im. To guarantee that this does not happen, 
we can choose c = 0, since I’@) is real and nonzero on the imaginary axis. Any other c 
satisfying the limit restriction is equally acceptable as long as the contour would not 
thereby be distorted from the imaginary axis by going past a zero of 1 & r(f), since 
in such a case the logarithm would acquire an imaginary part at %x. (In principle the 
contour could pass both a zero and a pole in 1 i r(f) and still have a well-behaved 
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integral as j Im 6 j --+ co. This condition cannot be achieved with the restriction on c: 
however; the poles in r(e) are at f = II, n + 0.) 

We now can conclude that D(s) will behave as -s-En as s -+ 0, where &, is a pole 
in the transform, A@. Such poles will appear if 

if f # 0. In the case of A, , the solutions of this equation are 

and in the case of 4-, 

where n is any positive integer. 
In addition to these poles, we must consider other possible singularities in A(e). 

Since S-P-)([) is analytic, the only other possibility would be singularities in G(t). in 
fact, @(& in part comes from contributions tof(s) arising from distributions on the 
other boundaries, B’, and since these contributions will be analytic near s = C, this 
part of cb&) will be the transform of functions which have power series expansions; 
i.e., they have poles at the negative integers. If the explicit form of Y(E) is inserted 
into Eq. (13, however, we find 

so that any poles which appear in Q’(t) at the negative integers are cancelled by the 
factor sin @T. On the other hand, if the boundary valuefi(s) orf&) has a nonanalytic 
behavior as s ---f 0 the singularities in Q(f) generated thereby will not be cancelled. 

Finally, we must consider singularities which are generated by parts of the kernel 
H~)(KP)/Y other than the most singular one which has already been treated. We will see 
that if 4(t) has a pole at -[, then additional poles will be generated at -5 - 2, 
-e - 4,... . Further, we will show that if 5 satisfies Eq. (I!?), then the contribution 
from these additional terms can be summed to provide a term in 3(s) proportional 
to the Bessel function J&KS). The proof consists of a demonstration that if B(s) : 
J&U), then the integral operator of Eq. (4) carried over a side 0 < s’ < 4 generates 
two terms: one proportional to J&KS) which is consistent with Eq. (4), and a second 
which is analytic. As has been seen, the latter makes a contribution to G(f) in Eq. (7) 
which produces no poles in A(c), and hence does not affect the analytic behavior of- 
D(s) as s ---f 0. 

For this proof we therefore consider 



30 R. J. RIDDELL, JR. 

where ] r - r’ j = [(s’ - seia)(s’ - se+)]li2. If the Hankel function is expressed 
using a Neumann and a Bessel function, the latter produces an integral which is an 
analytic function of s, since Jl(z)/z is an entire function of z2. Thus we only need 
consider 

v(s, cd) = s ’ N,(K 1 r - r’ I) 

Ir - r’) 
Jf(KS’) dS’. 

0 

The integrand has branch points in the complex s’ plane at s’ = 0, sei”, se-i”. If we 
introduce cuts in the plane as shown in Fig. 1, we can then write V(S, LX) as an integral 
over the contour C: 

~(3, a> = (1 - e2nic)-1 j, “yr’i, ;’ ‘) JE(Ks’) cl.‘. 

I XBL783-429 

FIG. 1. Contour used to evaluate the integral of the Hankel function, Hy’, 
function, Jf (see text). 

times the Bessel 

Assuming that s < C, the contour may be distorted into three parts as shown: C, and 
EI over the two cuts, and the parts of the circle Co . The portion of v(s, LX) contributed 
by Co gives an analytic function which we now ignore. Since 

N,(z) = - -& + ; log -7 . J,(z) + #l(Z), 
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where &(zj is an entire function, odd in z, the integrals over C, and zi, include only 
a pole and a logarithmic discontinuity contribution. Thus one finds 

(18) 

where A.F. represents an analytic function of s. The phase of the argument of ~&KS’) 

has been fixed on the basis of the cut from s’ = 0 to co in Fig. 1. The integrals over S’ 
can be rewritten as integrals over s’ from the origin to seia or s&+-~) plus an anaIy.ytic 
term, so we wish to calculate 

If we expand both Bessel functions in power series, we find 

The integral can be evaluated easily after expanding the factor (s’ - se-i”jm using the 
binomial theorem. Thus: 

To carry out the sums, we change variables to M = m + n, and G = k + n, and then 
interchange the order of summation between G and II to get: 

581!31(1-3 
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The sum over n can be done if we note that 

Then the sum, S, can be written as 

s = Jrn dx x-~-44-2 (-g [.x”ql - x)G]. 
1 

The integral can easily be evaluated, giving 

s=(-l)“(M--Y m+211+&+2) 
(M + l>! r(e + M+ 2) * 

Thus the sum over G becomes: 

We therefore obtain 

This term must be combined with one in which OL is replaced by (25~ - CL): 

j(s, a) + j(s, 2rr - a) = 

x {sin[(a - CX) 51 - sin[(7r - a) 6 - 2c&.!j}. (19) 

To complete the calculation of ~(3, a), we expand 

= -2i (F)’ einC jTo M! &tf!jY+ 1) sin[(7r - CX) t - 2olMJ. (20) 

If the results of Eqs. (19) and (20) are combined with Eq. (I@, we then find: 

v(s, a) = - (21) 

Finally, the kernel in the integral equation for a point on a side of the corner is 
-KS sin 01 * N,(K 1 r’ - r I)/(4 1 r’ - r I), so that if f satisfies Eq. (17) then the series 
of terms of the form sC+zM can be summed to give J5(~s). Thus, unless the boundary 
conditions introduce other singularities for nonintegral & there are no other singula- 
rities and hence we can expand D(s) in an infinite series of such Bessel functions. It 
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may be noted that if pole singularities in A(.$) are introduced by the boundary condi- 
tions at values of 6 which do not satisfy Eq. (17), then one still would have a series of 
terms for D(s) of the form s E+2hf, but the coefficients would no longer be related to the 
Bessel series. Lastly, we mention that although the analytic parts of V(S, E) and other 
analytic contributions to the integral equation do not influence the analytic contribu- 
tions to the integral equation do not influence the analytic form of D(sj, it is clear 
that they play an essential role in determining the residue of the poles in L!@) at the 
values of A given by Eq. (17). 

PI few comments are appropriate at this point: In deducing the analytic form of the 
solution, we have assumed that the unknown functions on the remainder of the 
boundary away from the corner of interest can be treated as if they were known. The 
legitimacy of this approach can be rigorously established using the Carlemann-Vekua 
method for solving singular equations [29]. In this technique one uses the solution of 

the “dominant part” of the equation as illustrated here in solving Eq. (12) to convert 
the singular kernel to one which is only weakly singular and hence can be solved using 
Fredholm theory. We did not feel that such an approac h, which does little else than to 
increase the complexity of notation and the bulk of the equations, was particulaby 
illuminating and so we have chosen the more heuristic approach given above. We 
refer the interested reader to the rigorous treatment of sing&r integral equations for a 
complete discussion. 

In addition to the behavior just deduced, in certain particular cases it is possible 
to obtain a different type of function in D(S). This will occur if the denominator in 
Eq. (1.5) has a double zero at ,$ = E, ; i.e., an “inside” and an “outside” [ as given by 
Eq. (17) are identical. This will only occur in the even solution if 

and in the odd case if 
212 

O1 = (2112 + 212 - 1) 2T7 

where JX, PI are positive integers. In such a case d(f) will have a double pole at tC ~ 
Since such a double pole can be obtained by the coalescence of two single poles, it is 
strongly suggested that we can expect a solution of D(S) of the form iU,(~s),@&=~, I 
The proof of this conjecture is quite simple. 

It has already been demonstrated that 

Since this relation is valid for values of 4 in the neighborhood of E, , it can be differen- 
tiated on E. However, if sin Z-E & sin[(?; - a)<] has a double zero E = &, 5 its first 
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derivative also vanishes there. Thus the nonanalytic part of the integral equation 
‘which depends on either J,l(~s) or aJ,l(~s)/af~ cancels out of the equation, and such 
terms are therefore allowed in the expansion of D(S). 

Finally, we consider the relation between the behavior of D(s) near a corner and 
that of #(r), where r is not on the boundary. Here: 

#(r) = $ f “:‘);z F ,-,” I) D(r’)(r’ - r) . da’, 

r’f we represent the point r in polar coordinates (I’, 0) we replace Eq. (22) with 

‘The trigonometric terms in the numerator of the brackets can be combined to give 

sin[(7r - 8) <] + sin[(T - a + 0) [] 

sin [ (27-r - a) f 
I [ cos (a - ‘@ ’ 1 (even) 

=2 cos [ 2 
sin (OL -22s) ’ (odd). 1 [ 2 1 

These functions are zero at the boundaries, 0 = 0 and 0 = 01, for es which satisfy 
Eq. (17), but if 4 satisfies the “exterior” condition (which depends on (27~ - a)), then 
the solution 4 has no term dependent on the corresponding J&K~) anywhere inside the 
corner, even though D(S) has such a term. [We note that the E’s are determined by the 
homogeneous part of the integral equation, and thus relate to solutions which vanish 
on the boundary. The specified boundary value for # enters the equation as the 
inhomogeneous term in the integral equation.] 

The results for the corner behavior deduced above can be compared with previous 
analyses based on direct treatment of the Helmholtz equation. The exact solution 
for the diffraction of scalar or electromagnetic waves by a wedge gives terms of the 
form ~~~~~~~~~~ near the edge of the wedge, where 12, k are integers [15, 161. Maue based 
his analysis of diffraction on the Helmholtz representation [14], but he obtained the 
behavior of the solution near a corner by considering the partial differential equation 
there, rather than directly using the integral equation as we have done. A quite 
general analysis of the solution of elliptic partial difierential equations together with 
associated boundary conditions has been carried out by Wigley [17]. Finally, it 
should be mentioned that Meixner [13] used the physically reasonable condition that 
the field energy density in the electromagnetic case should be integrable in order to 
exclude terms in the solution which are too singular as s + 0. The results obtained 
here completely agree with these various treatments since the first set of 4’s in Eqs. 
(17A, B) match the behavior obtained for solutions of the partial differential equation, 
while the second set, which depends on (2~ - a), does not produce a J&KI-) behavior 
in $(r, 0). It may be noted that the behavior of the solution to the more general 
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problem discussed by Wigley can have certain logarithmic terms which do not oe~ur 
in the present case. The logarithmic terms which would appear here in D(sj in the case 
of a double pole in n(E), as discussed above, can easily be seen to vanish in #(rj. 

Although we have demonstrated that the results obtained here for the dipole 
distribution are consistent with earlier work, some doubt may still remain regarding 
their equivalence. Clearly the analysis used here depends only on the form of the 
kernel in the integral equation, and, as shown by Kleinman and Roach [3], for any 
particular boundary value problem the same kernel also occurs in a related Helmholtz--- 
representation integral equation for another problem. For example, the interior 
Dirichlet problem using the dipole representation (IDD) has the same kernel as does 
the exterior Neumann problem using the Helmholtz representation (ENH), In terms 
of the solution to the equation, however, there is a difference: in the Helmholtz 
representation the solution must have the properties deduced using the partial differ- 
ential equation, while the dipole distribution is not so restricted since it is only al: 
auxiliary function. To gain some insight into these differences, we can use an argument 
given by Lamb [2] to relate the dipole distribution to a superposition of two solutions 
for the Helmholtz representation. 

We consider the Helmholtz representation for the interior of a region, ‘J bounded 
by SK7 . As is well known, one has 

fsv{G,(r, r’) #(r’) - G(r, r’) &(r’)> ds’ = $@I : i ;I 

where G(r, r’) is the usual free-space solution of the Helmholtz equation as given in 
Eq. (2) (for two dimensions), and IZ indicates the normal derivative taken with respect 
to r‘ out of V. (We again note that if the domain in r for # or Z/J’ is unbounded, for the 
equation to be true it is necessary that the solution for that region must satisfy an 
asymptotic outgoing wave condition, while for the bounded region the solution must 
remain finite throughout. These two conditions lead to different solutions since one 
cannot have a solution in all space which satisfies both.) If we use this relation once 
for the desired solution $ defined inside V’ and again for an auxiliary 4’ defined 
amide V, on adding the two representations, we obtain 

G(r) = js _ fG,(r, r’>[(#(r’i + $‘(r’)l - G(r, r’)E&dr’) + ~~,(r’)l~ ds’, j23 
v 

where r E 6’. Thns, if we choose #h(r) = -#,1(r) on SV we obtain the dipole representa- 
tion for the solution as D(r) = 4(r) + $‘(r). F rom this one sees that since $ must 
satisfy the edge conditions for the internal solution, and #’ must satisfy the external 
conditions, the dipole distribution will include both, as exhibited by Eq. (17) 

It may be helpful to indicate one further difference between the dipole and the 
Helmholtz representations even when the kernels are identical. For example, the IDD 
case satisfies 

D(r) ; 
2 $ 

G,(r, r’) D(r’) ds’ = #(r), 
SY 
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where #(r) is the (given) boundary value for the solution, while the ENH case has the 
equation 

$$ + $ G,(r, r’) #(r’) ds’ = $ G(r, r’) &Jr’) ds’, 

where &(r) is the (given) normal derivative of the solution on the boundary. Clearly, 
in the latter case the solution $ must be consistent with t,& , and the lack of internal- 
type 5’s in # must result from the specific form for the inhomogeneous part which of 
course differs from that of the dipole case. It seems desirable to demonstrate this 
result by a direct proof based on the integral equation. 

Finally we note that, as shown by Kleinman and Roach [3], the kernel in the Helm- 
holtz representation for a problem is the transpose of that arising in the dipole 
representation for the same case. This results in the replacement of s by s’ in Eq. (6) 
forfi and makes a corresponding change in the equation forfi . Otherwise the analysis 
for D(s) can be carried out in the same way as before, and it is easily seen that the 
resulting behavior for the.solution has each -E shifted to -5 - 1. In this case, 
however, the unknown function obtained is the normal derivative, & , so that the 
result is to be expected. 

III. ELIMINATION OF DIFFICULTIES CAUSED BY EIGENVALUES 
OF THE DIPOLE INTEGRAL EQUATION 

As has been stated earlier, the dipole representation suffers from difficulties arising 
from spurious eigenvalues associated with its “partner” problem [2]. This condition 
exists as well for the Helmholtz representation but in that case it can be shown that 
the inhomogeneous term in the integral equation is orthogonal to the eigensolution 
of the transposed kernel, so according to the Fredholm alternatives a solution exists 
although it will not be unique. By use of an additional condition [3, 19, 21, 221, 
however, the lack of uniqueness can be removed. 

In this section we wish to demonstrate that the dipole representation can be simply 
modified so that the difficulty with such unwanted solutions is avoided. This technique 
is similar to the Schmidt method for solving Fredholm equations [30], but has a differ- 
ent motivation. Let us write the dipole integral equation symbolically as 

D(s) 2 + LL K(s, s’) D(d) ds’ = Q(s), 

where L is the total path length around the boundary. We are now primarily interested 
in obtaining a solution to the integral equation even if K is close to an eigenvalue for the 
partner problem. We first make the substitution 

D(s) .= A D&) + D,(s), (2% 
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where D,(S) is the eigensolution of the homogeneous part of the integral equation, 
Eq. (24), and A is to be determined. We also make the further substitution 

wheref, g are to be specified. In numerical caIculations, we have chosen g(s) = 1 and 
f(s) = --D,(s)/2 with excellent results. With these substitntions, we then obtain a 
modified integral equation: 

E;@ -j- IL qs, s’) Do ds’ + f(s) j-” D,(d) g(f) ds’ 
0 0 

= @D(s) - A 11” I(@, s’j Do(d) ds’ t D,(s),‘z) = (2-Q 
0 

It is clear that if Ji D,(s’)g(s’) ~5’ = 0, the kernel K(s, s’j can be replaced by a(~, s’j 
in the equation, and one still has a valid solution of Eq. (24). Since the equation for D, 
is linear, the condition is easily achieved. We must only solve the equation 

9 + JoL k(s, s’) x(dj ds’ = S(S) 

twice: once for c(s) = Q(S) to get X(S) = Di@‘(sj, and again for I;(S) = D,(~j/2 +- 
,Jt K(s, s’) Q&s’> &’ to get Duo’. (Note that in this case, we can write 

i(s) = .rd’ MS, 3’) - K&, $31 D,(d) ds’, 

where K, is the kernel for K = ~~ .) Then we have 

D(s) = AD,(s) + lp’)(sj + AD$‘(s), 

and A must be chosen so that 

A=- s’ g(s) D?)(s) d$ g(s) D?)(s) ds. 
0 0 

The modified kernel, k, will not have the eigenvalue ~~ in its spectrum, and so 
approximate calculational techniques will normally have well-conditioned matrices. 
Further, the singular nature of the solution as K -+ ~~ is made explicit. In this limit, we 
see that the S(s) which generates D:“(s) becomes 

so that A(K - KJ will tend to a finite limit as K -+ K~ ) and A (hence D) will have a 
pole at K = K. L 
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With this modification, we can use the dipole representation to obtain solutions of 
the Helmholtz equation even for K = K,, . For this purpose, we begin by writing 

4(r) = JL K(r, 3') D(d) ds', 

where the use of r in the kernel rather than s is meant to indicate that r is an arbitrary 
point inside V. Using Eq. (25), we can write: 

$09 = A iL [K(r, s') - K,(r, s')] D,(d) ds' 

+ A S," K,(r, s') Q(d) ds' $ kL K(r, s') D,(d) ds', (29) 

where only the second term on the right exhibits a singularity as K -+ K~ . This term is 
A times the eigenfunction of the homogeneous equation, and we will now show that 
this function is zero in the region of interest. 

For the internal Dirichlet problem, for example, the partner problem is the external 
Neumann problem, and if /cO is an eigenvalue for the latter, the normal derivative of 
the external eigensolution, Z& , will vanish on the boundary. As a result of the 
identification of D(r) = 4(r) + f(r) f o 11 owing Eq. (23, this implies that qhn(r) also 
vanishes on the boundary. Further, since D satisfies the homogeneous equation, $(r) 

vanishes on the boundary as well and therefore y%(r) vanishes throughout the interior 
region. Similar arguments lead to the conclusion that for either an internal or external 
region or a Dirichlet or a Neumann problem, the eigensolution of the partner 
problem will vanish in the region of interest. [On the other hand, it is not true that an 
eigensolution of the problem of interest will vanish outside the region of interest.] 

Thus, even though D(S) has a singularity due to the existence of a partner eigen- 
solution, 4(r) is finite and the difficulty in the behavior of D(s) is easily removed by 
dropping the second term when calculating #(r). 

We can obtain a solution to the Helmholtz equation in the limit K -+ K,, if we set 
A(K - Ko) = Al, and then set K = K~ in the modified kernel, k. We then must solve 

q + j” k,(s, s’) D,(i) ds’ = Q(s) - A, 1” ( =t;“‘) II,(s’) ds’. 
0 0 K=KO 

This equation can be solved for D, since the kernel k(s, s’) will not generally have an 
eigenvalue at K = ~~ . (Only if the eigenvalue were degerate would a second eigenvalue 
occur, and in such a case the technique described here could be generalized to remove 
the second eigenfunction as well.) Finally, the solution of the Helmholtz equation 
in the limit K -+ ~~ is given by the limit of Eq. (29): 

z,b(r) = A, 1 L ( “Kzi “I ) 
0 

D,(s’) ds’ -t [’ K,(r, s') D,(d) ds’, 
K=KO -0 

which clearly produces a finite +(r). 
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The techniques in this paper have been used to obtain accurate solutions of the 
interior Dirichlet problem. For this interior problem, the kernel was constructed 
using the Neumann function NI instead of --iH, (‘I to obtain an integral equation 
with only real variables. This kernel led to a partner problem whose eigenvalues 
associated with the external Neumann problem were successfully removed as above. 
If the Hankel function had been used instead such eigenvalues would not have occurred 
but one would have twice as many variables to store in the computer since the integral 
equation is then complex. 

In addition to partner eigenvalues, the interior problem also has true resonant SOL- 
tions which produce very large solutions. These can be treated as above, except that. 
the contribution to G(r) from the term A J&,(r, dj D,(s’) ~7s’ will no longer vanish 
and in fact will have a pole at the eigenvalue. In this case there seems to be httle 
computational advantage to be gained by the separation of D into two parts. On the 
other hand, one can also visualize using the dipole representation in cases in which 
physical resonance of the system is not associated with the eigenvalues of the integral 
equation for a subregion, and so A cannot in fact have a pole at K = Kg , For example, 
the complete region of the problem may be divided into subregions of which the eigen- 
values have little connection with the response of the system as a whole. If this situa- 
tion can be identified a priori, it is then possible to modify the above procedure for 
the solution of the boundary value problem to improve numerical results. If, then, A 
does not have a pole as K --t K,, , it is clear from Eq. (27) and the fact that I?\‘) + 0 as 
K -+ ice that 

.L 

lim J g(s) p(s) ds = 0. K-iKo o 

Hence, rf K % K,, the value of 4 is determined as the ratio of two integrals, each of 
which is almost zero. Thus errors in the D,‘s are much increased in the evaluation of 
A, and in numerical calculations it is found that by far the largest contribution to Ihe 
error in Z/I(~) comes from the error in A. To avoid this error, we may express 

where 
Dfqs) = A(s) + S(s), (3Oj 

4) T + JoL k,(s, s’) A(d) ds’ = @o(s) 

and therefore 

S(s) j 
2 6 k(s, s’) S(d) ds’ = CD(s) - Go(s) - JoL [k(s, s’) - k,js, s’)] A(d) dsT. 

In these relations, k. is the kernel k and @, is the value of di in the limit K + K@ I 
Then, since 

! -L g(s) A(s) ds = 0, 
0 

A = - \ L g(s) S(s) ds/ IL g(s) D$q>:) ds. 
‘” ‘0 
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This expression for A is a significant improvement over Eq. (27) because both 6(s) 
and D:“(s) vanish in the limit K -+ ~~ as a result of the fact that the corresponding 
right-hand side of the integral equation vanishes. This is to be contrasted with the 
case involving 0:“’ in which the integral over the boundary vanishes as K -+ Kg, but 
B:‘) does not. In the new formulation, errors in A are indeed generated by errors in the 
right-hand side of the integral equation, but these are much more controllable than 
are errors in the sohtion of the integral equation. The significant feature of this 
approach is that errors in A(s) do not contribute to errors in A. Greatly improved 
accuracy in numerical calculations has been achieved using this formulation. 

In this section we have shown how the dipole treatment can be modified to eliminate 
difficulties normally encountered at the eigenvalues of a partner problem. It is of 
course clear that if more than one such eigenvalue occurs near the chosen value of K, 

the technique can easily be generalized to remove any desired set of eigenfunctions. 
.Since the removal technique given here is inherently very simple, there is no compelling 
argument based on the eigenvalue difficulty for using the somewhat more complicated 
Helmholtz representation as suggested by Schenck [19], Burton and Miller [22] and 
Kleinman and Roach [3]. Using that representation, the lack of uniqueness can be 
removed in a general way by the introduction of a second integral relation which is 
normally redundant but becomes essential at the eigenvalue. One must then effectively 
deal with two kernels, the “charge” and the “dipole” Green’s functions of the Helm- 
holtz representation, and this seems to add substantially to the complexity of the 
numerical calculations. In addition, the inhomogeneous term in the integral equation 
involves the integral of a kernel function over the boundary value of the solution, thus 
creating further complexity and producing another source of numerical error in the 
calculations. In the approach developed here, it is necessary to make an a priori 
determination of the unwanted eigenvalues and their eigenfunctions, but once that is 
,done these results can be stored for future use. 

CONCLUSION 

In this paper we have developed two ideas, both of which are of value for either 
improving the accuracy or extending the range of applicability of the dipole representa- 
tion to the solution of the Helmholtz equation. 

First, we provide an analysis of the properties of the dipole integral equation to 
obtain the form of the solution near a corner on the boundary. This analysis depends 
on the singular nature of the integral equation, and provides an alternative develop- 
ment to those based on the Helmholtz partial differential equation, although the 
results are different from but consistent with the latter. Secondly, we show how the 
dipole representation can be easily modified in many cases to remove a fundamental 
obstacle to its direct application. 

In a subsequent paper we show that in fact the dipole representation is capable of 
excellent numerical accuracy for a variety of problems. 
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